Агрегатные функции системы компоновки данных. Вложенные операторы в агрегатных функциях T-SQL Использование вложенных агрегатных функций

значение столбца Оценка . Таблица 5.7. Агрегатные функции
Функция Результат
COUNT Количество строк или непустых значений полей, которые выбрал запрос
SUM Сумма всех выбранных значений данного поля
AVG Среднеарифметическое значение всех выбранных значений данного поля
MIN Наименьшее из всех выбранных значений данного поля
MAX Наибольшее из всех выбранных значений данного поля
R1
ФИО Дисциплина Оценка
Группа 1 Петров Ф. И. Базы данных 5
Сидоров К. А. Базы данных 4
Миронов А. В. Базы данных 2
Степанова К. Е. Базы данных 2
Крылова Т. С. Базы данных 5
Владимиров В. А. Базы данных 5
Группа 2 Сидоров К. А. Теория информации 4
Степанова К. Е. Теория информации 2
Крылова Т. С. Теория информации 5
Миронов А. В. Теория информации Null
Группа 3 Трофимов П. А. Сети и телекоммуникации 4
Иванова Е. А. Сети и телекоммуникации 5
Уткина Н. В. Сети и телекоммуникации 5
Группа 4 Владимиров В. А. Английский язык 4
Трофимов П. А. Английский язык 5
Иванова Е. А. Английский язык 3
Петров Ф. И. Английский язык 5

Агрегатные функции используются подобно именам полей в операторе SELECT , но с одним исключением: они берут имя поля как аргумент . С функциями SUM и AVG могут использоваться только числовые поля. С функциями COUNT , MAX и MIN могут использоваться как числовые, так и символьные поля. При использовании с символьными полями MAX и MIN будут транслировать их в эквивалент ASCII кода и обрабатывать в алфавитном порядке. Некоторые СУБД позволяют использовать вложенные агрегаты, но это является отклонением от стандарта ANSI со всеми вытекающими отсюда последствиями.

Например, можно вычислить количество студентов, сдававших экзамены по каждой дисциплине. Для этого надо выполнить запрос с группировкой по полю "Дисциплина" и вывести в качестве результата название дисциплины и количество строк в группе по данной дисциплине. Применение символа * в качестве аргумента функции COUNT означает подсчет всех строк в группе.

SELECT R1.Дисциплина, COUNT(*) FROM R1 GROUP BY R1.Дисциплина

Результат:

Если же мы хотим сосчитать количество сдавших экзамен по какой-либо дисциплине, то нам необходимо исключить неопределенные значения из исходного отношения перед группировкой. В этом случае запрос будет выглядеть следующим образом:

Получим результат:

В этом случае строка со студентом

Миронов А. В. Теория информации Null

не попадет в набор кортежей перед группировкой, поэтому количество кортежей в группе для дисциплины " Теория информации " будет на 1 меньше.

Можно применять агрегатные функции также и без операции предварительной группировки, в этом случае все отношение рассматривается как одна группа и для этой группы можно вычислить одно значение на группу.

Обратившись снова к базе данных "Сессия" (таблицы R1, R2, R3 ), найдем количество успешно сданных экзаменов:

Это, конечно, отличается от выбора поля, поскольку всегда возвращается одиночное значение , независимо от того, сколько строк находится в таблице. Аргументом агрегатных функций могут быть отдельные столбцы таблиц. Но для того, чтобы вычислить, например, количество различных значений некоторого столбца в группе, необходимо применить ключевое слово DISTINCT совместно с именем столбца. Вычислим количество различных оценок, полученных по каждой дисциплине:

Результат:

В результат можно включить значение поля группировки и несколько агрегатных функций , а в условиях группировки можно использовать несколько полей. При этом группы образуются по набору заданных полей группировки. Операции с агрегатными функциями могут быть применены к объединению множества исходных таблиц. Например, поставим вопрос: определить для каждой группы и каждой дисциплины количество успешно сдавших экзамен и средний балл по дисциплине.

Результат:

Мы не можем использовать агрегатные функции в предложении WHERE , потому что предикаты оцениваются в терминах одиночной строки, а агрегатные функции - в терминах групп строк.

Предложение GROUP BY позволяет определять подмножество значений в особом поле в терминах другого поля и применять функцию агрегата к подмножеству. Это дает возможность объединять поля и агрегатные функции в едином предложении SELECT . Агрегатные функции могут применяться как в выражении вывода результатов строки SELECT , так и в выражении условия обработки сформированных групп HAVING . В этом случае каждая агрегатная функция вычисляется для каждой выделенной группы. Значения, полученные при вычислении агрегатных функций , могут быть использованы для вывода соответствующих результатов или для условия отбора групп.

Построим запрос , который выводит группы, в которых по одной дисциплине на экзаменах получено больше одной двойки:

В дальнейшем в качестве примера будем работать не с БД "Сессия", а с БД "Банк", состоящей из одной таблицы F , в которой хранится отношение F, содержащее информацию о счетах в филиалах некоторого банка:

F = (N, ФИО, Филиал, ДатаОткрытия, ДатаЗакрытия, Остаток); Q = (Филиал, Город);

поскольку на этой базе можно ярче проиллюстрировать работу с агрегатными функциями и группировкой.

Например, предположим, что мы хотим найти суммарный остаток на счетах в филиалах. Можно сделать раздельный запрос для каждого из них, выбрав SUM(Остаток) из таблицы для каждого филиала. GROUP BY , однако, позволит поместить их все в одну команду:

SELECT Филиал, SUM(Остаток) FROM F GROUP BY Филиал;

GROUP BY применяет агрегатные функции независимо для каждой группы, определяемой с помощью значения поля Филиал. Группа состоит из строк с одинаковым значением поля Филиал, и

Как вы помните, различные элементы определения окна (секционирование, упорядочение и кадрирование) по сути являются различными вариантами фильтрации. Существуют другие потребности в фильтрации, которые эти определения не в состоянии удовлетворить. Некоторые из этих потребностей удается удовлетворить с помощью предложения FILTER , которое не было реализовано в SQL Server 2012. Есть также попытки решить эту проблему за счет внесения предложений по расширению стандарта, которые, я надеюсь, так или иначе появятся в стандарте и SQL Server.

Начну с предложения FILTER. В стандарте определено, что в функциях агрегирования это предложение позволяет фильтровать набор строк, к которому применяется агрегирование, с использованием предиката, формат этого предложения выглядит так:

В качестве примера приведу запрос, вычисляющий разницу между текущим количеством и среднемесячным количеством для сотрудника до текущей даты (не месяца текущей строки):

SQL Server 2012 пока не поддерживает предложение FILTER. Честно говоря, я не знаю СУБД, которая поддерживала его. Если вам нужна такая возможность, существует довольно простое альтернативное решение - использовать в качестве входных данных для функции агрегирования выражение CASE :

<функция агрегирования>(CASE WHEN <условие поиска> THEN <входное выражение> END)

Вот полный запрос, который решает ту же задачу:

SELECT empid, ordermonth, qty, qty - AVG(CASE WHEN ordermonth <= DATEADD(month, -3, CURRENT_TIMESTAMP) THEN qty END) OVER(PARTITION BY empid) AS diff FROM Sales.EmpOrders;

Чего все еще не хватает в стандарте (начиная с версии SQL 2008) и SQL Server 2012, так это возможности ссылаться на элементы текущей строки для целей фильтрации. Это можно было бы применять в предложении FILTER, в альтернативном решении с использованием выражения CASE, а также в других случаях, в которых нужна фильтрация.

Для демонстрации этой потребности представьте на секундочку, что на элемент текущей строки можно ссылаться с помощью префикса $current_row. А теперь представим себе, что нужно написать запрос представления Sales.OrderValues, который бы вычислял для каждого заказа разницу между значением текущего заказа и средним значением для определенного сотрудника для всех клиентов кроме того клиента, которому принадлежит этот заказ. Эта задача решается следующим запросом с предложением FILTER:

В качестве альтернативы можно воспользоваться выражением CASE:

Не работает в T-SQL SELECT orderid, orderdate, empid, custid, val, val - AVG(CASE WHEN custid <> $current_row.custid THEN val END) OVER(PARTITION BY empid) AS diff FROM Sales.OrderValues;

Ещё раз напомню, что это всего лишь мои выдумки для иллюстрации того, чего не хватает в стандарте языка, поэтому, как говорится, «не пытайтесь повторить это у себя дома».

Предложение по улучшению

Принцип сравнительных оконных функций выглядит интересно. Он довольно простой и позволяет удовлетворить потребность ссылаться на элементы из текущей строки. Но что действительно заставит вас пошевелить мозгами, так этого исключительно крутое предложение по расширению стандарта, которое называется «распознавание паттернов в строках» и решает задачу обращения к элементам из текущей строки, а также многие другие задачи.

Паттерны в последовательностях строк определяются с применением семантики, похожей на регулярные выражения. Этот механизм может применяться для определения табличного выражения, а также для фильтрации строк в определении окна. Он также может использоваться в технологиях потоковой передачи данных, например с StreamInsight в SQL Server, а также в запросах, которые работают с неперемещаемыми данными. Вот ссылка на предоставленный для всеобщего доступа документ: http://www.softwareworkshop.com/h2/SQL-RPR-review-paper.pdf . Прежде чем читать этот документ, я предлагаю освободить голову от лишних мыслей и хорошенько взбодриться кофе. Это непросто чтение, но идея исключительно интересна и я надеюсь, что она пробьет себе путь в стандарт SQL и будет использоваться не только для данных в движении, но и для неактивных данных.

Ключевое слово DISTINCT в функциях агрегирования

SQL Server 2012 не поддерживает параметр DISTINCT в оконных функциях агрегирования. Представьте, что вам нужно запрашивать представление Sales.OrderValues и получить для каждого заказа число конкретных клиентов, с которыми работал текущий сотрудник с начала и до текущей даты. Вам нужно выполнить такой запрос:

Не работает в T-SQL SELECT empid, orderdate, orderid, val, COUNT(DISTINCT custid) OVER(PARTITION BY empid ORDER BY orderdate) AS numcusts FROM Sales.OrderValues;

Но поскольку этот запрос не поддерживается, нужно искать обходное решение. Один из вариантов - прибегнуть к помощи функции ROW_NUMBER. Я расскажу о ней подробнее чуть попозже, а пока достаточно будет сказать, что она возвращает уникальное целое значение для каждой строки секции, начиная с единицы и с шагом 1, в соответствии с определением упорядочения в окне. С помощью функции ROW_NUMBER можно назначить строкам номера, секционированные по empid и custid и упорядоченные по orderdate. Это означает, что строки с номером 1 относятся к первому случаю работы сотрудника с данным клиентом при упорядочении заказов по датам. Используя выражение CASE можно вернуть значение custid, только если номер строки равен 1, а в противном случае вернуть NULL. Вот запрос, реализующий описанную логику, с результатом его работы:

SELECT empid, orderdate, orderid, custid, val, CASE WHEN ROW_NUMBER() OVER(PARTITION BY empid, custid ORDER BY orderdate) = 1 THEN custid END AS distinct_custid FROM Sales.OrderValues;

Заметьте, что для каждого сотрудника возвращается только первое значение custid при условии упорядочения по дате, а для последующих значений возвращаются NULL. Следующий шаг заключается в определении обобщенного табличного значения (CTE) на основе предыдущего запроса, а затем применении агрегирования текущего числа строк к результату выражения CASE:

WITH C AS (SELECT empid, orderdate, orderid, custid, val, CASE WHEN ROW_NUMBER() OVER(PARTITION BY empid, custid ORDER BY orderdate) = 1 THEN custid END AS distinct_custid FROM Sales.OrderValues) SELECT empid, orderdate, orderid, val, COUNT(distinct_custid) OVER(PARTITION BY empid ORDER BY orderdate) AS numcusts FROM C;

Вложенные агрегаты

На данный момент вы знаете, что есть групповые и оконные агрегаты. Как уже говорилось, функции при этом используются одинаковые, но контекст разный. Групповые агрегаты работают на основе групп строк, определенных предложением GROUP BY и возвращают одно значение на группу. Оконные агрегаты действуют на основе окон строк и возвращают одно значение для каждой строки в базовом запросе. Вспомните рассказ о логической обработке запросов из статьи Запросы . Напомню порядок, в котором в соответствии с концепцией должны обрабатываться различные предложения запросов:

Групповые агрегаты используются, когда запрос является групповым, и они разрешены в фазах, которые обрабатываются после определения групп, а именно, начиная с фазы 4 и далее. Помните, что в результате запроса каждая группа представлена только одной строкой. Оконные агрегаты разрешены, начиная с фазы 5 и последующих, потому что они работают на основе строк базового запроса - после фазы HAVING.

Агрегаты двух типов - даже при том, что они используют те же имена функций и логику вычислений - работают в разных контекстах. Вернусь к важному моменту, который я хотел отметить в этом разделе: что, если нужно просуммировать значение, сгруппированное по идентификатору сотрудника, и одновременно агрегировать все эти суммы по всем сотрудникам?

Это совершенно легальный, но на первый взгляд странный подход - применять оконный агрегат к окну, содержащему строки с атрибутами, полученными с применением групповых агрегатов. Я сказал «странный», потому что на первый взгляд выражение SUM(SUM(val)) в запросе выглядит неуместным. Но оно имеет право на существование. Посмотрите на запрос, который решает поставленную задачу:

Групповой агрегат SUM(val) вычисляет общую сумму цены всех заказов для каждого сотрудника. Это означает, что в результате базового запроса есть строка для каждого сотрудника с этой общей суммой. После этого оконный агрегат вычисляет сумму сумм для отдельных сотрудников, иначе говоря вычисляет итоговую сумму, и делит групповой агрегат на оконный, чтобы вычислить в процентах долю каждого сотрудника и итоговой цифре.

Будет проще увидеть логику вложенных агрегатов, если анализ запроса разбить да два этапа. На первом вычисляется групповой агрегат:

SELECT empid, SUM(val) AS emptotal FROM Sales.OrderValues GROUP BY empid;

Этот результат можно считать начальной точкой для дальнейшего оконной агрегации. Таким образом, можно применить агрегат SUM к выражению, представленному псевдонимом emptotal. К сожалению нельзя применить его непосредственно к псевдониму по причинам, изложенным ранее (помните принцип «все сразу»?). Но его можно применить к базовому выражению так: SUM(SUM(val)) OVER(...) и можно считать, что это SUM(emptotal) OVER(...). Таким образом получаем следующее:

SELECT empid, SUM(val) AS emptotal, SUM(val) / SUM(SUM(val)) OVER() * 100. AS pct FROM Sales.OrderValues GROUP BY empid;

Заметьте, что сложностей прямого вложения можно избежать за счет использования табличных выражений, таких как CTE. CTE можно определить на основе запроса, вычисляющего групповой агрегат, а во внешнем запросе вычисляется оконный агрегат, примерно так:

WITH C AS (SELECT empid, SUM(val) AS emptotal FROM Sales.OrderValues GROUP BY empid) SELECT empid, emptotal, emptotal / SUM(emptotal) OVER() * 100. AS pct FROM C;

Посмотрим на другой пример сложностей, связанных с оконными и групповыми функциями. Следующая задача является вариацией запроса, приведенного в предыдущей статье. Надо создать запрос таблицы Sales.Orders, возникающий для каждого сотрудника точные даты заказов и точные имена клиентов, с которыми работал текущий сотрудник с начала и до текущей даты. Первая попытка реализации:

WITH C AS (SELECT empid, orderdate, CASE WHEN ROW_NUMBER() OVER(PARTITION BY empid, custid ORDER BY orderdate) = 1 THEN custid END AS distinct_custid FROM Sales.Orders) SELECT empid, orderdate, COUNT(distinct_custid) OVER(PARTITION BY empid ORDER BY orderdate) AS numcusts FROM C GROUP BY empid, orderdate;

Но при выполнении запроса вы получаете следующую ошибку:

Column "C.distinct_custid" is invalid in the select list because it is not contained in either an aggregate function or the GROUP BY clause.

Внешняя функция COUNT является не групповыми, а оконным агрегатом. Таким образом она может работать только на основе элементов, которые действительны, только если определяются самостоятельно, то есть не как входные данные для оконного агрегата. Теперь на секундочку забудьте об оконном агрегате и скажите, корректен ли следующий запрос (для краткости определение CTE опущено)?

SELECT empid, orderdate, distinct_custid FROM C GROUP BY empid, orderdate;

Ясно, что ответ отрицательный. Атрибут distinct_custid в списке SELECT неверен, потому что не содержится ни в агрегирующей функции, ни в предложении GROUP BY, и примерно об этом говорится в сообщении об ошибке. Что вам нужно сделать, так это применить оконный агрегат SUM с кадром, реализующим принцип нарастающего итога, к групповому агрегату COUNT, который считает конкретные вхождения:

WITH C AS (SELECT empid, orderdate, CASE WHEN ROW_NUMBER() OVER(PARTITION BY empid, custid ORDER BY orderdate) = 1 THEN custid END AS distinct_custid FROM Sales.Orders) SELECT empid, orderdate, SUM(COUNT(distinct_custid)) OVER(PARTITION BY empid ORDER BY orderdate) AS numcusts FROM C GROUP BY empid, orderdate;

Ясно, что это не единственный способ получения нужного результата, но моей задачей было проиллюстрировать принцип вложения групповых агрегатов в оконные. Как вы помните, в соответствии с порядком логической обработки запросов оконные функции обрабатываются на этапе SELECT или ORDER BY, то есть после GROUP BY. По этой причине групповые агрегаты видны в качестве входных выражений оконных агрегатов. Также вспомните, что если код становится сложным для понимания, всегда можно задействовать табличные выражения, чтобы избежать прямого сложения функций и повысить читабельность кода.

Важно! Если параметр функции имеет тип Строка и в нем указывается имя поля, которое содержит пробелы, то такое имя поля должно быть заключено в квадратные скобки.
Например: "[Количество Оборот]".

1. Сумма (Total) - рассчитывает сумму значений выражений, переданных ей в качестве аргумента для всех детальных записей. В качестве параметра можно передавать Массив. В этом случае функция будет применена к содержимому массива.

Пример :
Сумма(Продажи.СуммаОборот)

2. Количество (Count) - рассчитывает количество значений отличных от значения NULL. В качестве параметра можно передавать Массив. В этом случае функция будет применена к содержимому массива.

Синтаксис :
Количество([Различные] Параметр)

В указания получения различных значений следует перед параметром метода Количество указать Различные (Distinct).

Пример :
Количество(Продажи.Контрагент)
Количество(Различные Продажи.Контрагент)

3. Максимум (Maximum) - получает максимальное значение. В качестве параметра можно передавать Массив. В этом случае функция будет применена к содержимому массива.

Пример :
Максимум(Остатки.Количество)

4. Минимум (Minimum) - получает минимальное значение. В качестве параметра можно передавать Массив. В этом случае функция будет применена к содержимому массива.

Пример :
Минимум(Остатки.Количество)

5. Среднее (Average) - получает среднее значение для значений, отличных от NULL. В качестве параметра можно передавать Массив. В этом случае функция будет применена к содержимому массива.

Пример :
Среднее(Остатки.Количество)

6. Массив (Array) - формирует массив, содержащий для каждой детальной записи значение параметра.

Синтаксис :
Массив([Различные] Выражение)

В качестве параметра можно использовать таблицу значений. При этом результатом работы функции будет массив, содержащий значения первой колонки таблицы значений, переданной в качестве параметра. Если выражение содержит функцию Массив, то считается, что данное выражение является агрегатным. Если указано ключевое слово Различные, то получаемый массив не будет содержать дублирующихся значений.

Пример :
Массив(Контрагент)

7. ТаблицаЗначений (ValueTable) - формирует таблицу значений, содержащую столько колонок, сколько параметров у функции. Детальные записи получаются из наборов данных, которые нужны для получения всех полей, участвующих в выражениях параметров функции.

Синтаксис :
ТаблицаЗначений([Различные] Выражение1 [КАК ИмяКолонки1][, Выражение2 [КАК ИмяКолонки2],...])

Если параметрами функции выступают поля–остатки, то в результирующую таблицу значений попадут значения для записей по уникальным комбинациям измерений из других периодов. При этом значения получаются только для полей-остатков, измерений, счетов, полей периодов и их реквизитов. Значениями остальных полей в записях из других периодов считаются равными NULL. Если выражение содержит функцию ТаблицаЗначений, то считается, что данное выражение является агрегатным. Если указано ключевое слово Различные, то в получаемой таблице значений не будет строк, содержащих одинаковые данные. После каждого параметра может располагаться необязательное ключевое слово КАК и имя, которое будет назначено колонке таблицы значений.

Пример :
ТаблицаЗначений(Различные Номенклатура, ХарактеристикаНоменклатуры КАК Характеристика)

8. Свернуть (GroupBy) - предназначена для удаления дубликатов из массива.

Синтаксис :
Свернуть(Выражение, НомераКолонок)

Параметры :

  • Выражение - выражение типа Массив или ТаблицаЗначений, значения элементов которого нужно свернуть;
  • НомераКолонок - (если выражение имеет тип ТаблицаЗначений) тип Строка. Номера или имена (через запятую) колонок таблицы значений, среди которых нужно искать дубликаты. По умолчанию – все колонки.
Пример :
Свернуть(ТаблицаЗначений(НомерТелефона, Адрес) ,"НомерТелефона");

9. ПолучитьЧасть (GetPart) - получает таблицу значений, содержащую определенные колонки из исходной таблицы значений.

Синтаксис :
ПолучитьЧасть(Выражение, НомераКолонок)

Параметры :

  • Выражение - тип ТаблицаЗначений. Таблица значений, из которой нужно получить колонки;
  • НомераКолонок - тип Строка. Номера или имена (через запятую) колонок таблицы значений, которые нужно получить.
Возвращаемое значение: ТаблицаЗначений, в которой имеются только колонки, которые указаные в параметре.

Пример :
ПолучитьЧасть(Свернуть(ТаблицаЗначений(НомерТелефона, Адрес) ,"НомерТелефона"),"НомерТелефона");

10. Упорядочить (Order) - предназначена для упорядочивания элементов массива и таблицы значений.

Синтаксис :
Упорядочить(Выражение, НомераКолонок)

Параметры :

  • Выражение - Массив или ТаблицаЗначений, из которой нужно получить колонки;
  • НомераКолонок - (если выражение имеет тип ТаблицаЗначений) номера или имена (через запятую) колонок таблицы значений, по которым нужно упорядочить. Может содержать направление упорядочивания и необходимость автоупорядочивания: Убыв/Возр + Автоупорядочивание.
Возвращаемое значение: Массив или ТаблицаЗначений, с упорядоченными элементами.

Пример :
Упорядочить(ТаблицаЗначений(НомерТелефона, Адрес, ДатаЗвонка),"ДатаЗвонка Убыв");

11. СоединитьСтроки (JoinStrings) - предназначена для объединения строк в одну строку.

Синтаксис :
СоединитьСтроки (Значение, РазделительЭлементов, РазделителиКолонок)

Параметры :

  • Значение - выражения, которые нужно объединить в одну строку. Если является Массивом, то в строку будут объединяться элементы массива. Если является ТаблицаЗначений, то в строку будут объединяться все колонки и строки таблицы;
  • РазделительЭлементов - строка, содержащая текст, который нужно использовать в качестве разделителя между элементами массива и строками таблицы значений. По умолчанию – символ перевода строк;
  • РазделителиКолонок - строка, содержащая текст, который нужно использовать в качестве разделителя между колонками таблицы значений. По умолчанию "; ".
Пример :
СоединитьСтроки(ТаблицаЗначений(НомерТелефона, Адрес));

12. ГрупповаяОбработка (GroupProcessing) - возвращает объект ДанныеГрупповойОбработкиКомпоновкиДанных. В объект в свойство Данные помещается в виде таблицы значений значения группировок для каждого выражения, указанного в параметре функции Выражения. В случае использования иерархической группировки каждый уровень иерархии обрабатывается отдельно. Значения для иерархических записей также помещаются в данные. В свойство ТекущийЭлемент объекта помещается строка таблицы значений, для которой в настоящий момент вычисляется функция.

Синтаксис :
ГрупповаяОбработка(Выражения, ВыраженияИерархии, ИмяГруппировки)

Параметры :

  • Выражения . Выражения, которые нужно вычислить. Строка, в которой через запятую перечислены выражения, которые нужно вычислить. После каждого выражение возможно наличие необязательного ключевого слова КАК и имени колонки результирующей таблицы значений. Каждое выражение образует колонку таблицы значений свойства Данные объекта ДанныеГрупповойОбработкиКомпоновкиДанных.
  • ВыраженияИерархии . Выражения, которые нужно вычислить для иерархических записей. Аналогично параметру Выражения с тем отличием, что параметр ВыраженияИерархии используется для иерархических записей. Если параметр не указан, то для вычисления значений для иерархических записей используется выражения, указанные в параметре Выражение.
  • ИмяГруппировки . Имя группировки, в которой нужно вычислять группировку обработки. Строка. Если не указано, то вычисление происходит в текущей группировке. Если вычисление идет в таблице и параметр содержит пустую строку, или не указан, то значение вычисляется для группировки – строки. Компоновщик макета при генерации макета компоновки данных заменяет данное имя на имя группировки в результирующем макете. Если группировка не доступна, то функция будет заменена на значение NULL.
13. Каждый (Every) - если хоть одна запись имеет значение Ложь, то результат Ложь, иначе Истина.

Синтаксис :
Каждый(Выражение)

Параметр :

  • Выражение - тип Булево.
Пример :
Каждый()

14. Любой (Any) - если хоть одна запись имеет значение Истина, то результат Истина, иначе Ложь

Синтаксис :
Любой(Выражение)

Параметр :

  • Выражение - тип Булево.
Пример :
Любой()

15. СтандартноеОтклонениеГенеральнойСовокупности (Stddev_Pop) - вычисляет стандартное отклонение совокупности. Вычисляется по формуле: SQRT(ДисперсияГенеральнойСовокупности(X)).

Синтаксис :
СтандартноеОтклонениеГенеральнойСовокупности(Выражение)

Параметр :

  • Выражение - тип Число.

Пример :

X 1 2 3 4 5 6 7 8 9
Y 7 1 2 5 7 34 32 43 87
ВЫБРАТЬ СтандартноеОтклонениеГенеральнойСовокупности(Y) ИЗ Таблица
Результат: 805.694444

16. СтандартноеОтклонениеВыборки (Stddev_Samp) - вычисляет совокупное типовое стандартное отклонение. Вычисляется по формуле: SQRT(ДисперсияВыборки(X)).

Синтаксис :
СтандартноеОтклонениеВыборки(Выражение)

Параметр :

  • Выражение - тип Число.
Тип возвращаемого значения Число.

Пример :

X 1 2 3 4 5 6 7 8 9
Y 7 1 2 5 7 34 32 43 87
ВЫБРАТЬ СтандартноеОтклонениеВыборки(Y) ИЗ Таблица
Результат: 28.3847573

17. ДисперсияВыборки (Var_Samp) - вычисляет типовое различие ряда чисел без учета значений NULL в этом наборе. Вычисляется по формуле: (Сумма(X^2) - Сумма(X)^2 / Количество(X)) / (Количество(X) - 1). Если Количество(X) = 1, то возвращается значение NULL.

Синтаксис :
ДисперсияВыборки(Выражение)

Параметр :

  • Выражение - тип Число.
Пример :
ВЫБРАТЬ ДисперсияГенеральнойСовокупности(Y) ИЗ Таблица
Результат: 716.17284

19. КовариацияГенеральнойСовокупности (Covar_Pop) - вычисляет ковариацию ряда числовых пар. Вычисляется по формуле: (Сумма(Y * X) - Сумма(X) * Сумма(Y) / n) / n, где n число пар (Y, X) в которых ни Y ни X не являются NULL.

Синтаксис :
КовариацияГенеральнойСовокупности(Y, X)

Параметры :

  • Y - тип Число;
  • X - тип Число.
Пример :
X 1 2 3 4 5 6 7 8 9
Y 7 1 2 5 7 34 32 43 87
ВЫБРАТЬ КовариацияГенеральнойСовокупности(Y, X) ИЗ Таблица
Результат: 59.4444444

20. КовариацияВыборки (Covar_Samp) - вычисляет типовое различие ряда чисел без учета значений NULL в этом наборе. Вычисляется по формуле: (Сумма(Y * X) - Сумма(Y) * Сумма(X) / n) / (n-1), где n число пар (Y, X) в которых ни Y ни X не являются NULL.

Синтаксис :
КовариацияВыборки(Y, X)

Параметры :

  • Y - тип Число;
  • X - тип Число.
Пример :
X 1 2 3 4 5 6 7 8 9
Y 7 1 2 5 7 34 32 43 87
ВЫБРАТЬ КовариацияВыборки(Y, X) ИЗ Таблица
Результат: 66.875

21. Корреляция (Corr) - вычисляет коэффициент корреляции ряда числовых пар. Вычисляется по формуле: КовариацияГенеральнойСовокупности(Y, X) / (СтандартноеОтклонениеГенеральнойСовокупности(Y) * СтандартноеОтклонениеГенеральнойСовокупности(X)). Не учитываются пары, в которых Y или X равны NULL.

Синтаксис :
Корреляция(Y, X)

Параметры :

  • Y - тип Число;
  • X - тип Число.
Пример :
X 1 2 3 4 5 6 7 8 9
Y 7 1 2 5 7 34 32 43 87
ВЫБРАТЬ Корреляция(X, Y) ИЗ Таблица
Результат: 0.860296149

22. РегрессияНаклон (Regr_Slope) - вычисляет наклон линии. Вычисляется по формуле: КовариацияГенеральнойСовокупности(Y, X) / ДисперсияГенеральнойСовокупности(X). Вычисляется без учета пар, содержащих NULL.

Синтаксис :
РегрессияНаклон(Y, X)

Параметры :

  • Y - тип Число;
  • X - тип Число.
Пример :
X 1 2 3 4 5 6 7 8 9
Y 7 1 2 5 7 34 32 43 87
ВЫБРАТЬ РегрессияНаклон(Y, X) ИЗ Таблица
Результат: 8.91666667

23. РегрессияОтрезок (Regr_Intercept) - вычисляет Y-точку пересечения линии регресса. Вычисляется по формуле: Среднее(Y) - РегрессияНаклон(Y, X) * Среднее(X). Вычисляется без учета пар, содержащих NULL.

Синтаксис :
РегрессияОтрезок(Y, X)

Параметры :

  • Y - тип Число;
  • X - тип Число.
Пример :
ВЫБРАТЬ РегрессияКоличество(Y, X) ИЗ Таблица
Результат: 9

25. РегрессияR2 (Regr_R2) - вычисляет коэффициент детерминации. Вычисляется без учета пар, содержащих NULL.

Синтаксис :
РегрессияR2(Y, X)

Параметры :

  • Y - тип Число;
  • X - тип Число.
Возвращаемое значение:
  • Null - если ДисперсияГенеральнойСовокупности(X) = 0;
  • 1 - если ДисперсияГенеральнойСовокупности(Y)=0 И ДисперсияГенеральнойСовокупности(X)<>0;
  • POW(Корреляция(Y,X),2) - если ДисперсияГенеральнойСовокупности(Y)>0 И ДисперсияГенеральнойСовокупности(X)<>0.
Пример :
X 1 2 3 4 5 6 7 8 9
Y 7 1 2 5 7 34 32 43 87
ВЫБРАТЬ РегрессияR2(Y, X) ИЗ Таблица
Результат: 0.740109464

26. РегрессияСреднееX (Regr_AvgX) - вычисляет среднее число X после исключения X и Y пар, где или X или Y являются пустыми. Среднее(X) вычисляется без учета пар, содержащих NULL.

Синтаксис :
РегрессияСреднееX(Y, X)

Параметры :

  • Y - тип Число;
  • X - тип Число.
Пример :
X 1 2 3 4 5 6 7 8 9
Y 7 1 2 5 7 34 32 43 87
ВЫБРАТЬ РегрессияСреднееX(Y, X) ИЗ Таблица
Результат: 5

27. РегрессияСреднееY (Regr_AvgY) - вычисляет среднее число Y после исключения X и Y пар, где или X или Y являются пустыми. Среднее(Y) вычисляется без учета пар, содержащих NULL.

Синтаксис :
РегрессияСреднееY(Y, X)

Параметры :

  • Y - тип Число;
  • X - тип Число.
Пример :
X 1 2 3 4 5 6 7 8 9
Y 7 1 2 5 7 34 32 43 87
ВЫБРАТЬ РегрессияСреднееY(Y, X) ИЗ Таблица
Результат: 24.2222222

28. РегрессияSXX (Regr_SXX) - вычисляется по формуле: РегрессияКоличество(Y, X) * ДисперсияГенеральнойСовокупности(X). Вычисляется без учета пар, содержащих NULL.

Синтаксис :
РегрессияSXX(Y, X)

Параметры :

  • Y - тип Число;
  • X - тип Число.
Возвращает сумму квадратов независимых выражений, используемых в линейной модели регресса. Функция может использоваться, чтобы оценить статистическую обоснованность модели регресса.

Пример :
ВЫБРАТЬ РегрессияSYY(Y, X) ИЗ Таблица
Результат: 6445.55556

30. РегрессияSXY (Regr_SXY) - вычисляется по формуле: РегрессияКоличество(Y, X) * КовариацияГенеральнойСовокупности(Y, X). Вычисляется без учета пар, содержащих NULL.

Синтаксис :
РегрессияSXY (Y, X)

Параметры :

  • Y - тип Число;
  • X - тип Число.
Пример :
X 1 2 3 4 5 6 7 8 9
Y 7 1 2 5 7 34 32 43 87
ВЫБРАТЬ РегрессияSXY(Y, X) ИЗ Таблица
Результат: 535

31. МестоВПорядке (Rank)

Синтаксис :
МестоВПорядке(Порядок, ПорядокИеррахии, ИмяГруппировки)

Параметры :

  • Порядок – тип Строка. Содержит выражения, в последовательности которых нужно расположить групповые записи, разделенные через запятую. Направление упорядочивания управляется при помощи слов Возр, Убыв. После поля также можно указать строку Автоупорядочивание, что обозначает, что при упорядочивании ссылок нужно использовать поля упорядочивания, определенные для объекта, на который ссылка. Если последовательность не указана, то значение рассчитывается в последовательности группировки;
  • ПорядокИеррахии – тип Строка. Содержит выражения упорядочивания для иерархических записей;
  • ИмяГруппировки – тип Строка. Имя группировки, в которой нужно вычислять группировку обработки. Если не указано, то вычисление происходит в текущей группировке. Если вычисление идет в таблице и параметр содержит пустую строку, или не указан, то значение вычисляется для группировки – строки. Компоновщик макета при генерации макета компоновки данных заменяет данное имя на имя группировки в результирующем макете. Если группировка не доступна, то функция будет заменена на значение NULL.
Если в последовательности имеются две или более записей с одинаковыми значениями полей упорядочивания, то для всех записей функция возвращает одинаковые значения.

Пример :
МестоВПорядке("[Количество Оборот]")

32. КлассификацияABC (ClassificationABC)

Синтаксис :
КлассификацияABC(Значение, КоличествоГрупп, ПроцентыДляГрупп, ИмяГруппировки)

Параметры :

  • Значение – тип Строка. по которому нужно рассчитывать классификацию. Строка, в которой указано выражение;
  • КоличествоГрупп - тип Число. Задает количество групп, на который нужно разбить;
  • ПроцентыДляГрупп - тип Строка. Столько, на сколько групп нужно разбить минус 1. Через запятую. Если не задано, то автоматически;
  • ИмяГруппировки - тип Строка. Имя группировки, в которой нужно вычислять группировку обработки. Если не указано, то вычисление происходит в текущей группировке. Если вычисление идет в таблице и параметр содержит пустую строку, или не указан, то значение вычисляется для группировки – строки. Компоновщик макета при генерации макета компоновки данных заменяет данное имя на имя группировки в результирующем макете. Если группировка не доступна, то функция будет заменена на значение NULL.
Результатом работы функции будет номер класса, начиная с 1, который соответствует классу A.

Пример :
КлассификацияABC("Сумма(ВаловаяПрибыль)", 3, "60, 90")

Введение

SQL (Structured Query Language) - Структурированный Язык Запросов - стандартный язык запросов по работе с реляционными БД.

Первый международный стандарт языка SQL был принят в 1989 г. (далее мы будем называть его SQL/89 или SQL1). Иногда стандпрт SQL1 также называют стандартом ANSI/ISO и подавляющее большинство доступных на рынке СУБД поддерживают этот стандарт полностью.

В конце 1992 г. был принят новый международный стандарт языка SQL (который в дальнейшем будем называть SQL/92 или SQL2). И он не лишен недостатков, но в то же время является существенно более точным и полным, чем SQL/89. В настоящий момент большинство производителей СУБД вносят изменения в свои продукты так, чтобы они в большей степени удовлетворяли стандарту SQL2.

Последний стандарт по языку SQL был выпущен в 1996 г. Он назван SQL3.

SQL нельзя в полной мере отнести к традиционным языкам программирования: он не содержит традиционные операторы управления ходом выполнения программы, операторы описания типов и многое другое, он содержит только набор стандартных операторов доступа к данным, хранящимся в базе данных. Операторы SQL встраиваются в базовый язык программирования, которым может быть любой стандартный язык типа C++, PL, COBOL и т.д. Кроме того, операторы SQL могут выполняться непосредственно в интерактивном режиме.

1. Структура SQL.

SQL содержит следующие разделы:

1. Операторы определения данных DDL (Data definition language).

Оператор Смысл Действие
CREATE TABLE Создать таблицу Создает новую таблицу в БД
DROP TABLE Удалить таблицу Удаляет таблицу из БД
ALTER TABLE Изменить таблицу Изменяет структуру существующей таблицы
CREATE VIEW Создать представление Создает виртуальную таблицу, т.е. таблицу, которая на самом деле не существует, но моделируется с использованием этого оператора.
ALTER VIEW Изменить представление Изменяет структуру или содержание виртуальной таблицы
DROP VIEW Удалить представление Удаляет описание виртуальной таблицы. Саму таблицу удалять не надо,т.к. она на самом деле и не существует.
CREATE INDEX Создать индекс Создает специальную физическую структуру, называемую индексом, которая обеспечивает ускорение доступа к данным
DROP INDEX Удалить индекс Удаляет созданную структуру
CREATE SYNONYM Создать синоним
DROP SYNONYM Удалить синоним

2. Операторы манипулирования данными Data Manipulation Language (DML)



3. Язык запросов Data Query Language (DQL)

4. Средства управления транзакциями (DCL)

5. Средства администрирования данных (DDL)

Программный SQL

2. Типы данных

В языке SQL/89 поддерживаются следующие типы данных: CHARACTER, NUMERIC, DECIMAL, INTEGER, SMALLINT, FLOAT, REAL, DOUBLE PRECISION. Эти типы данных классифицируются на типы строк символов, точных чисел и приблизительных чисел.

В стандарте SQL92 добавлены следующие типы данных:

VARCHAR(n) - строки символов переменной длины

NCHAR(N) – строки локализованных символов постоянной длины

NCHAR VARYING(n) - строки локализованных символов переменной длины

BIT(n) - строка битов постоянной длины

BIT VARYING(n) - строка битов переменной длины

DATE календарная дата

TIMESTAMP(точность) дата и время

INTERVAL временной интервал

3. Оператор выбора SELECT

Select - единственный оператор поиска, который заменяет все операции реляционной алгебры.

Синтаксическая диаграмма опертора SELECT изображена на рис.1


Здесь ключевое слово ALL означает, что в результирующий набор строк включаются все строки удовлетворяющие условим запроса. Ключевое слово DISTINCT означает, что в результирующий набор включаются только различные строки, т.е. дубликаты строк результата не включаются в набор. Если не стоит никакое ключевое слово, то такая ситуация интерпретируется как наличие ключевого слова ALL.

Символ * означает, что в результирующий набор включаются все столбцы из исходных таблиц запроса.

В части FROM задается перечень исходных отношений (таблиц) запроса.

В части WHERE задаются условия отбора срок результата или условия соединиения кортежей исходных таблиц.

В частиGROUP BY задается список полей группировки.

В части HAVING задаются предикаты-условия, накладываемые на каждую группу.

В части ORDER BY задается список полей упорядочения результата.

В выражении условий для части WHERE могут быть использованы следующие предикаты:

· предикат сравнения с образцом LIKE и NOT LIKE

· предикат EXIST и NOT EXIST.

· предикаты сравнения{ =, <>, >,<,>=,<=,}. Синтаксическая диаграмма предикатов сравнения представлена на рис.2


предикат IN - входит в множество / не входит в множество.

Предикат IN или NOT IN может также использоваться и для сравнения проверяемого выражения с подзапросом, в этом случае синтаксическая диаграмма изображена на рис. 5.

Предикат IN истинен тогда, когда значение атрибута, заданного в проверяемом выражении для текущего кортежа совпадает хотя бы с одним из множества значений, полученных в результате выполнения соответствующего подзапроса или содержащихся в списке значений. И обратно, предикат NOT IN – истинен только тогда, когда значение заданного атрибута в текущем кортеже не совпадает ни с одним из множества значений, определенных встроенным подзапросом или заданным списком значений.


предикат LIKE - включает (подобен)

Шаблон может содержать символы _ подчеркивания для обозначения любого одиночного символа;

% символ процента - для обозначения любой произвольной последовательности символов.

Предикат LIKE истинен тогда, когда значение атрибута, заданного именем столбца в текущем кортеже включает в себя заданный <шаблон>.

Предитак NOT LIKE – истинен тогда, когда значение атрибута в текущем кортеже не включает в себя заданный <шаблон>.

· предикат NULL - неизвестно, неопределено

Синтаксическая диаграмма предиката представлена на рис. 7.


В условиях поиска могут быть использованы все рассмотренные ранее предикаты.

Отложив на время знакомство с группировкой, рассмотрим детально первые три строки оператора SELECT:

SELECT - ключевое слово, которое сообщает СУБД, что эта команда - запрос. Все запросы начинаются этим словом с последующим пробелом. За ним может следовать способ выборки - с удалением дубликатов (DISTINCT ), или без удаления (ALL , подразумевается по умолчанию). Затем следует список перечисленных через запятую столбцов, которые выбираются запросом из таблиц, или символ ‘* ’ для выбора всей строки. Любые столбцы, не перечисленные здесь, не будут включены в результирующий набор данных. Это, конечно, не значит, что они будут удалены или их информация будет стерта из таблиц, потому что запрос не воздействует на информацию в таблицах - он только показывает данные.

FROM - ключевое слово, которое должно быть представлено в каждом запросе. После ключевого слова FROM следует один или несколько пробелов и далее список исходных таблиц, которые используются в запросе. Имена таблиц отделяются друг от друга запятыми. Таблицам можно присвоить имена-псевдонимы, что бывает полезно для осуществления операции соединения таблицы с самой собой или для доступа из вложенного подзапроса к текущей записи внешнего запроса (вложенные подзапросы здесь не рассматриваются). Псевдоним – это временное имя таблицы, которое используется только в данном запросе и далее не применяется. Псевдоним отделяется от основного имени таблицы по крайней мере одним пробелом. Синтаксическая диаграмма части FROM представлена на рис. 9.


Все последующие части оператора SELECT являются необязательными.

· WHERE - ключевое слово, за которым следует предикат-условие, который определяет те записи, которые попадут в результаирующий набор данных запроса.

Рассмотрим отношения базу данных, которая моделирует сдачу сессии в некотором учебном заведении. Пусть она состоит из трех отношений , , . Будем считать, что они представлены таблицами R1, R2 и R3 соответственно.

R1=(ФИО, Дисциплина, Оценка )

R2=(ФИО, Группа)

R3=(Группа, Дисциплина)

Приведем несколько примеров использования оператора SELECT.

· Список всех групп (без повторений), где должны пройти экзамены

SELECT DISTINCT Группы
FROM R3

· Список студентов, которые сдали экзамен по БД на «отлично»

SELECT ФИО
FROM R1
WHERE Дисциплина = "БД" AND Оценка = 5

· Список всех студентов, которым надо что-либо сдавать, вместе с названием дисциплины.

SELECT ФИО, Дисциплина
FROM R2, R3
WHERE R1.Группа = R2.Группа

Здесь часть WHERE задает условия соединения отношений R1 и R2. При отсутствии условий соединения в части WHERE результат будет эквивалентен расширенному декартову произведению и, в этом случае, каждому студенту были бы приписаны все дисциплины из отношения R2, а не те, которые должна сдавать его группа.

· Список разгильдяев, имеющих несколько двоек

SELECT ФИО
FROM R1 a, R1 b
WHERE a.ФИО = b.ФИО AND
a.Дисциплина <> b.Дисциплина AND
a.Оценка <= 2 AND b.Оценка.<= 2

Здесь мы использовали псевдонимы для именования отношения R1 a и b, так как для записи условий поиска нам необходимо работать сразу с двумя экземплярами данного отношения.

Из этих примеров хорошо видно, что логика работы оператора выбора (декартово произведение-селекция-проекция) не совпадает с порядком описания в нем данных (сначала список полей для проекции, потом список таблиц для декартова произведения, потом условие соединения). Дело в том, что SQL изначально разрабатывался для применения конечным пользователем, и его стремились приблизить к языку естественному, а не к языку алгоритмическому. Конечно, в качестве естественного выбран английский, как международный язык, широко используемый в вычислительной технике и программировании. По этой причине SQL на первых порах вызывает путаницу и раздражение у начинающих его изучать профессиональных программистов, которые привыкли разговаривать с машиной именно на алгоритмических языках.

Наличие неопределенных Null значений повышает гибкость обработки информации, хранящейся в БД. В наших примерах мы можем предположить ситуацию, когда студент пришел на экзамент, но не сдавал его по некоторой причине, в этом случае оценка по некоторой дисциплине для данного студента имеет неопределенное значение. В данной ситуации можно поставить вопрос: «Найти студентов, пришедших на экзамен, но не сдававших его с указанием названия дисциплины». Оператор Select будет выглядеть следующим образом:

SELECT ФИО, Дисциплина

WHERE Оценка IS NULL

Сразу хочу оговориться, что все примеры, приведенные ранее условны. Почему? Разве они не будут работать в реальных базах данных? Разве они неправильны? Здесь все правильно кроме имен атрибутов или столбцов таблицы. В большинстве СУБД (Систем управления базами данных) не разрешается именовать столбцы на национальных языках, это объекты базы данных и объекты языка и требуется, чтобы они именовались по правилам именования идентификаторов в данном языке. Чаще всего именем атрибута может быть последовательность букв латинского алфавита и цифр, начинающаяся с буквы, не содержащая некоторых специальных символов (например пробелов, точек, запятых, знаков процента % и других специальных символов) и имеющая некоторые ограничения по длине. В разных СУБД эти ограничения разные, например в MS SQL Server 2000 – длина имени атрибута может достигать 128 символов. Длинные имена атрибутов неудобны для написания запроса, но очень короткие однобуквенные имена не позволяют сохранить семантику смысл столбца таблицы, поэтому выбирают некоторый компромис и именуют недлинно, но удобно, так чтобы не надо было заглядывать в полное описание базы данных при написании каждого запроса. Кроме того, имена атрибутов, так же как и имена других объектов не должны совпарать с ключевыми словами языка SQL – т.е. теми словами, которые входят в операторы языка.

Поэтому с точки зрения корректности мы должны бы были схему базы данных «Сессия» представить в виде

R1=(St_name,Discipline, Mark )

R2=(St_name,N_group)

R3=(N_group,Discipline)

И соотвествующим образом изменить все запросы.

Применение агрегатных функций и вложенных запросов в операторе выбора

Запросы могут вычислять обобщенное групповое значение полей точно также как и значение одного поля. Это делается с помощью агрегатных функций. Агрегатные функции производят одиночное значение для всей группы таблицы. Список этих функций:

Агрегатные функции используются подобно именам полей в операторе SELECT, но с одним исключением: они берут имя поля как аргумент. С функциями SUM и AVG могут использоваться только числовые поля. С функциями COUNT, MAX, и MIN могут использоваться как числовые так и символьные поля. При использовании с символьными полями, MAX и MIN будут транслировать их в эквивалент ASCII, и обрабатывать в алфавитном порядке. Некоторые СУБД позволяют использовать вложенные агрегаты, но это является отклонением от стандарта ANSI со всеми вытекающими отсюда последствиями.

Обратившись снова к базе данных «Сессия» (таблицы R1, R2, R3), найдем количество успешно сданных экзаменов:

SELECT COUNT(*)
FROM R1
WHERE Mark > 2;

Это, конечно, отличается от выбора поля, поскольку всегда возвращается одиночное значение, независимо от того, сколько строк находится в таблице. Из-за этого агрегатные функции и поля не могут выбираться одновременно, если не будет использовано специальное предложение GROUP BY.

Предложение GROUP BY позволяет определять подмножество значений, которое далее называется группой, и применять функцию агрегата к этой группе. Группа образуется из всех строк, для которых значения полей группировки, заданные в предложении GROUP BY, имеют одинаковое значение. Это дает возможность объединять поля и агрегатные функции в едином предложении SELECT. Синтаксическая диаграмма применения агрегатных функций изображена на рис.10 Агрегатные функции могут применяться как в выражении вывода результатов строки SELECT , так и в выражении условии обработки сформированных групп HAVING . В этом случае каждая агрегатная функция вычисляется для каждой выделенной группы. Значения, полученные при вычислении агрегатных функций, могут быть использованы для вывода соответствующих результатов или для условия отбора групп.

При использовании агрегатных функций необходимо помнить, что в результирующем наборе могут присутствовать только значения полей группировки и возможно значения агрегатных функций. Не допустимо группировать по одним значениям, а выводить другие значения. Это будет синтаксической ошибкой.

Например, такой запрос всегда будет ошибочным:

Select A

Group By B

Действительно, давайте разберемся. Что же мы хотим найти? Мы пытаемся вывести некоторое значение столбца А из таблицы Т , и при этом выполняем группировку по другому столбцу, столбцу В. Выполняем группировку – это означает, собираем все строки с одинаковыми значениями столбца В в одну группу и дальше, а дальше непонятно, мы выводим значение столбца А, но ведь в одной группе может быть множество значений, разных значений столбца А. Так какое же значение мы выводим? Это непонятно ни нам, ни компьютеру. Именно поэтому он отказывается выполнять подобный запрос и заявляет, что у нас синтаксическая ошибка.


Вернемся к нашей базе данных «Сессия», но дополним ее еще несколькими атрибутами. Во-первых, среди студентов могут быть однофамильцы, поэтому для идентификации студента будем применять намер студенческой зачетной книжки, который всегда однозначно идентифицирует студента. И во-вторых, предположим, что студент может делать несколько попыток сдачи экзамена по одной и той же дисциплине, а для этого введем в отношение R1 дату очередной попытки сдачи экзамена. И, наконец, третье дополнение, будем считать, что у нас в Вузе учится множество групп по разным специальностям, тогда схема нашей базы данных будет следующей

Sessia (N_zach,Discipline, Mark,Data_ex )